Question 05: Implement K-Nearest Neighbors algorithm on diabetes.csv dataset. Compute confusion matrix, accuracy, error rate, precision and recall on the given dataset. Download hole Program / Project code, by clicking following link: Question ? Answer Programming Code: Following code write in: ML_P05.py # ML Project Program 05
# K-Nearest Neighbors Algorithm on diabetes.csv dataset
import pandas as pd
import numpy as np
data = pd.read_csv("./diabetes_dataset/diabetes.csv")
data
data.info()
data.describe()
data.columns
# Checking null values
data.isnull().sum()
# create variables
data_x = data.drop(columns = "Outcome", axis=1)
data_y = data['Outcome']
data.shape
data_x.shape , data_y.shape
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
scaledX = scale.fit_transform(data_x)
# split into Train & Test
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(scaledX, data_y, test_size = 0.2,)
# Machine Learning Model - KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 7)
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
from sklearn import metrics
# Confusion Matrix
cs = metrics.confusion_matrix(y_test, y_pred)
print("Confusion Matrix is : \n", cs)
# Accuracy score
ac = metrics.accuracy_score(y_test, y_pred)
print("Accuracy score is : ", ac) # Model Accuracy is 69%
# Error Rate
er = 1 - ac
print("Error rate is : ", er) # Error Rate is : 0.305
# Precision
p = metrics.precision_score(y_test, y_pred)
print("Precision: ", p)
# Recall
r = metrics.recall_score(y_test, y_pred)
print("Recall: ", r)
# Precision score is: 0.607 &
# Recall score is: 0.534
# Thanks for Watching
# Thanks For Reading.
Output:
# ML Project Program 05 # K-Nearest Neighbors Algorithm on diabetes.csv dataset import pandas as pd import numpy as np data = pd.read_csv("./diabetes_dataset/diabetes.csv") data data.info() data.describe() data.columns # Checking null values data.isnull().sum() # create variables data_x = data.drop(columns = "Outcome", axis=1) data_y = data['Outcome'] data.shape data_x.shape , data_y.shape from sklearn.preprocessing import StandardScaler scale = StandardScaler() scaledX = scale.fit_transform(data_x) # split into Train & Test from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(scaledX, data_y, test_size = 0.2,) # Machine Learning Model - KNN from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 7) knn.fit(x_train, y_train) y_pred = knn.predict(x_test) from sklearn import metrics # Confusion Matrix cs = metrics.confusion_matrix(y_test, y_pred) print("Confusion Matrix is : \n", cs) # Accuracy score ac = metrics.accuracy_score(y_test, y_pred) print("Accuracy score is : ", ac) # Model Accuracy is 69% # Error Rate er = 1 - ac print("Error rate is : ", er) # Error Rate is : 0.305 # Precision p = metrics.precision_score(y_test, y_pred) print("Precision: ", p) # Recall r = metrics.recall_score(y_test, y_pred) print("Recall: ", r) # Precision score is: 0.607 & # Recall score is: 0.534 # Thanks for Watching # Thanks For Reading.
Output:
0 Comments